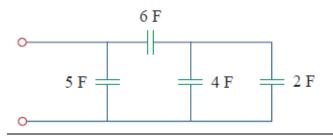
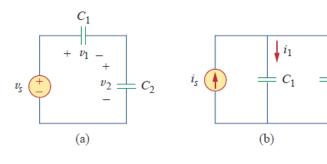

- **6.1** If the voltage across the 7.5-F capacitor is $2te^{-3t}$ V, find the current and the power as a function of time.
- **6.10** The voltage across a 2-mF capacitor is shown below. Determine the current through the capacitor as a function of time, i(t).

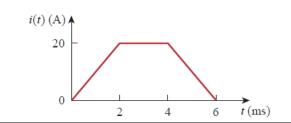

6.11 A 4-mF capacitor has the current waveform shown in Fig. 6.48. Assuming that sketch the voltage waveform v(t).

6.13 Find the voltage across the capacitors in the circuit under dc conditions.

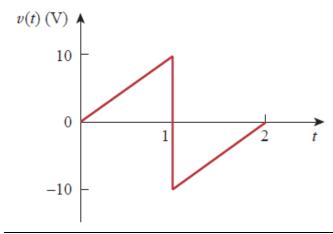
6.17b Determine the equivalent capacitance.

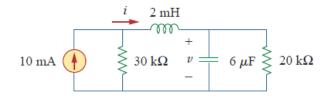


6.25a only


6.25 (a) Show that the voltage-division rule for two capacitors in series as in Fig. 6.59(a) is

$$v_1 = \frac{C_2}{C_1 + C_2} v_s, \qquad v_2 = \frac{C_1}{C_1 + C_2}$$


assuming that the initial conditions are zero


6.40 The current through a 10-mH inductor is shown in Fig. 6.66. Determine the voltage across the inductor at t = 1, 3, and 5 ms.

6.45 If the voltage waveform in Fig. 6.68 is applied to a 50-mH inductor, find the inductor current Assume i(0) = 0.

6.48 Under steady-state dc conditions, find i and v in the circuit of Fig. 6.71.

Numerical Answers

6.1
$$15(1-3t)e^{-3t}$$
 A; $30t(1-3t)e^{-6t}$ W

6.10
$$i(t) = \begin{cases} 32 \text{ kA} & 0 < t < 1 \,\mu\text{s} \\ 0 & 1 < t < 3 \,\mu\text{s} \\ -32 \text{ kA} & 3 < t < 4 \,\mu\text{s} \end{cases}$$

6.11
$$v(t) = \begin{cases} 10 + 3.75t \, \text{V} & 0 < t < 2 \, \text{s} \\ 22.5 - 2.5t \, \text{V} & 2 < t < 4 \, \text{s} \\ 12.5 \, \text{V} & 4 < t < 6 \, \text{s} \\ 2.5t - 2.5 \, \text{V} & 6 < t < 8 \, \text{s} \end{cases}$$

6.25 *Hint*: the charge on each capacitor must be the same.

$$v(1) = 25 \text{ V}$$

 $v(3) = 0 \text{ V}$
 $v(5) = -25 \text{ V}$

6.45
$$i(t) = \begin{cases} 250t^2 & \text{A} & 0 < t < 1 \text{ s} \\ [0.250t^2 - t + 1] & \text{kA} & 1 < t < 2 \text{ s} \end{cases}$$

6.48
$$i = 3 \text{ mA}; \ v = 60 \text{ V}$$